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FLUTTER. OF A UNIFORM WING -WITH AN ARBITRARILY PLACED MASS 
ACCORDING TO A DIFFERENTIAL-EQUATION ANALYSIS 

AND A COMPARISON WITH EXPERIMENT 
By HARRY L. RUNYAN and CHARLES E. WATKINS 

SUMMARY 

A method is presented for the calculation of the JEutter speed 
of a uniform ting carrying an arbitrarily placed concentrated 
mass. The method, an extension of recently published work 
by Goland and Luke, involves the solution of the di$erential 
equations of motion of the wing at flutter speed and therefore 
does not require the assumption of specijic normal modes of 
vibration. The order of the flutter determinant to be solved 
by this method depends upon the order of the system of diIere,n- 
tial equations and not upon the number of modes of vibration 
involved. 

The differential equations are solved by operational methods, 
and a brief discussion of oierational methods as applied to 
boundary-value problems is included in one of two appendixes. 
A comparison is made with experiment for a wing with a large 
eccentrically mounted weight and good agreement is obtained. 
Sample calculations are presented to illustrate the method; and 
curves of amplitudes of displacement, torque, and shear for a 
particular case are compared with corresponding curves com- 
puted from the jirst uncoupled normal modes. 

For convenience, the method employs two-dimensional air 
.forces and could be extended to apply to uniform wings with 
any number of arbitrarily placed concentrated weights, one qf 
which might be considered as a fuselage. The location of such 
masses as engines, fuel tanks, and landing-gear installations 
might be used to advantage in increasing the Jlutter speed of a 
given wing. 

INTRODUCTION 

The common procedures in flutter analysis of an airplane 
wing involve many simplifying assumptions. In particular, 
the degrees of freedom of the wing are usually determined by 
choosing the first few normal modes of the structure, and the 
wing motion at flutter is then described in terms of these 
chosen modes. This approach of employing prescribed 
modes is often adapted to the Rayleigh type analysis of 
vibration and may be referred to as “Rayleigh type analysis.” 
In specific calculations with this method the amount of work 
required is proportional to the number of normal modes 
involved. In particular, the order of the flutter determinant 
that must be solved depends directly upon the number of 
modes involved. For simple wings, without concentrated 
masses, the Rayleigh type analysis usually yields satisfactory 
results with not more than two or three normal modes. 
However, if the wing carries concentrated masses, such as 

lw3035-50 

engine, fuel tank, or landing-gear installations, so many 
normal modes may be required to obtain satisfactory results 
that the Rayleigh method may not be the most feasible 
method. 

In cases where many degrees of freedom are involved the 
most logical procedure would be to treat the system of 
differential equations of motion of the wing.rather than to 
choose specific modes. For arbitrary wing plan forms this 
method woulcl be in general very difficult and tedious to 
carry through, although it has the advantage that the order 
of the flutter determinant that must be solved depends only 
upon the order of the system of differential equations and not 
upon the number of modes of vibration involved. 

As early as 1929 Kiissner (reference 1) used the differential 
equation approach to formulate the problem in the form of 
an integro-differential equation for a wing of general plan 
form. Kiissner set up some particular examples and sug- 
gested a method of solution by a process of iteration. This 
method was not followed up until during the war when some 
related work was undertaken in Germany but not finished. 
Wielandt (reference 2) has recently made contributions to the 
treatment of nonself-adjoint differential equations by itera- 
tive processes. In the light of these contributions perhaps 
the problem of flutter analysis as proposed by Kiissner 
warrants further investigation. 

Recently, Goland (reference 3) applied the differential- 
equation method to a uniform cantilever wing and was able 
to carry out the solution of the flutter problem by straight- 
forward methods. In reference 4 Goland and Luke extended 
the solution of the problem of the uniform wing to inchide a 
uniform wing carrying a fuselage at the semispan and con- 
centrated weights at the tips. Goland and Luke made use 
of the Laplace transform to solve the differential equations by 
operational methods for both the symmetric and antisym- 
metric types of flutter. In both references 3 and 4, the 
objective was to compare flutter speeds and certain flutter 
parameters for specific uniform wings calculated by the 
differential-equation method with the same quantities calcu- 
lated by the Rayleigh method when only the fundamental 
bending and torsion modes were used in the calculations. 
Fairly close agreement between results calculated by the two 
methods were obtained in both references 3 and 4. NO 
comparison with experiment, however, was made in either 
case. 

1 
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The results of a systematic series of flutter tests made to 
determine the effect of concentrated weights and concen- 
trated weight positions on the flutter speed of a uniform 
cantilever wing are reported in reference 5. After these 
experiments were finished, the results were compared with a 
theoretical analysis by the Rayleigh method (reference 6). 
In cases where the mass of the weight was of the same order 
as that of the wing and placed so that the distance between 
its center of gravity and. the elastic axis of the wing was a 
considerable fraction of the wing chord, several normal modes 
had to be employed and there was no way of knowing in 
advance just what number should be used. ‘Because of this 
difficulty and because the wing was a uniform wing, the most 
extreme case was chosen from reference 5 and investigated by 
the differential-equation method by following an extended 
procedure of Goland and Luke. The purpose of this report 
is to present the results of this investigation. 

This report consists of the main text and two appendixes. 
In the main text the differential-equation method is set up 
for any uniform cantilever wing with an arbitrarily placed 
concentrated weight and the solution, based on an extension 
of the method used by Goland and Luke, is developed. 
Application is then made to a particular wing-weight system 
used in reference 5, and comparison with experimental 
results is given. The mass of the weight (weight labeled 7a 
in reference 5) was about 92 percent of the mass of the wing 
and at each spanwise weight position the weight was placed 
so that its center of gravity was about 0.41 chord forward of 
the elastic axis of the wing. (It may be mentioned for the 
sake of comparison that, in the numerical example treated in 
reference 4, the mass of the weight was only 39 percent of the 
mass of the wing and was placed 0.1 chord behind the elastic 
axis of the wing.) The geometric aspect ratio of the wing 
was 6, which was considered large enough to warrant the use 
of two-dimensional air forces without aspect-ratio corrections 
for oscillatory instability (not necessarily so for the divergent 
type of instability (see reference 7)). One other simplifica- 
tion was the omission of terms due to structural damping. 
The computed results agree remarkably well with experi- 
mental results, particularly in regard to trends. 

In appendix A the method used by Goland and Luke, 
which includes the derivation of the differential equations, 
for a wing carrying a tip weight is outlined and extended to a 
wing carrying an arbitrarily placed weight. A somewhat 
general but brief discussion of operational methods of solving 
boundary-value problems is included and illustrated with a 
simple example for readers who might bc interested but are 
not familiar with the operational approach. 

In appendix B the derivation of the flutter determinant is 
completed, and a method of solving the determinant is 
illustrated by a detailed calculation of the flutter speed for 
the wing and one weight position of the wing-weight combina- 
tion discussed in the text. As a final topic in this appendix 
the solution obtained for the flutter determinant is used with 

the solutions of the differential equations to calculate the 
amplitudes and phase angles of the deflection curves of the 
wing-weight system at flutter speed. 

SYMBOLS 

a 

b 
el 

e2 

9 

I 

I¶G 

K, 

K2 

nondimensional distance of elastic axis from 
midchord measured in half-chords, positive 
for positions of elastic axis behind midchord 

wing half-chord, feet 
chordwise distance of wing center of gravity 

from elastic axis, positive for center of 
gravity behind elastic axis, feet 

chordwise distance of weight center of gravity 
from elastic axis, positive for center of 
gravity behind elastic axis, feet 

gravitational constant, feet per second per 
second 

mass moment of inertia of uniform wing per 
unit of spanwise length, referred to wing 
elastic axis, pound-second2 (mK12) 

mass moment of inertia of weight referred to 
wing elastic axis, foot-pound-second2 

radius of gyration of wing sections about wing 
elastic axis, feet 

radius of gyration of weight about elastic axis, 
feet 

k reduced-frequency parameter 

L aerodynamic lift force per unit of spanwise 
length 

.L,$-~L,‘=s-~~~L, 

Lo+iLN’=rpb3 k,--L, (i +a)] 

1 semispan of wing, feet 
1, location of weight measured from wing root, 

feet 
L,,, L,,M,), Me aerodynamic coefficients as tabulated in 

reference 8 
M aerodynamic moment per unit of spanwise 

length taken about elastic axis 

M,+iM;=rpb3 [AA--L (i-b)] 

Mu+iMoJ=apb4 [Mm-L,(i+a)-Mfi (a+a)+LjI (;+a>‘] 

W 
m 
WW 
N 
T 
R,, R,, R3 
S 

t 

Q-1, 

weight of wing model, pounds 
mass of wing per unit length 
weight of concentrated weight, pounds 
transverse shear force in wing at station 2 
torsional moment in wing at station 2 
roots of cubic equation 
operator used in Laplace transformation 
time coordinate 
sum of all symmetric polynomial functions in 

R,, Rz, R, which are of degree n 
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UO experimental flutter speed for wing without 
weight, feet per second 

V flutter speed, feet per second 
V -. 

bw reduced flutter speed 
X spanwise coordinate measured from wing root 
yc?t> general mode shape function in bending 
Y(Xl mode shape function in bending after assump- 

tion of harmonic motion (y,(x) f&(x)) 
EI, flexural rigidity of uniform wing, pound-feet? 
GJ torsional rigidity of uniform wing, pound-feet2 

w2 
a=a (m+L,+iL’) 

w2 
P=m (mel+LO+W) b 

T=%> (mel+Mu+iM,‘) 

W2 “=GJ (I+Me+iMo’) 

apb2 K mass ratio 7 
( > 

P air density, slugs per cubic foot 
A complex value of determinant 
A, value of A when real and imaginary parts are 

equal . 
Wx,tj general mode shape function in torsion 
e(x) mode shape function in torsion after assump- 

tion of harmonic motion (e,(s) +i&(x)) 
W circular frequency at flutter, radians per 

second 

f frequency, cycles per second & 
( > 

ANALYSlS 

As mentioned in the introduction the differential equations 
that govern the motion of a uniform wing at flutter speed, as 
derived by Goland in reference 3, and a method of solving 
the equations for a uniform cantilever wing carrying an 
arbitrarily placed weight, based on a method developed by 
Goland and Luke in reference 4, are discussed in appendix 
A. The analysis, therefore, is devoted to a brief discussion 
of the differential equations of motion of the wing, the bound- 
ary conditions, solution of the boundary-value problem by 
means of the Laplace transform, and the solution of the 
flutter determinant. 

The differential equations and boundary conditions that 
govern the motion, at flutter speed, of a cantilever wing of 
length I with a concentrated weight placed II units along the 
span from the root section and ez units forward of the elastic 
axis of the wing, as derived in appendix A, are 

y’“(x) -ay(x) -pqx> =o (1) 

e”(x)+Yy(4++qx)=o (2) 

la) y(o)&(o)=e(o)=o 
(b) El,y”(Z) =EI,y”‘(Z) = GJe’(Z) =o 

(c) EI,[y”‘(Z,-0) -y”‘&+O)]=-7 w2[y(Zl)+e2e(Zt)] 

(d) GJ[e’(Z,-o)-e/(1,+0)]=+ w2~e2y(Zl)+Kz2e(Z,)] 

where 
w2 '- 

a=mb (m+L,+iL,') 

W2 
P=EI, (mel+L+iW 

~=t> (mel+M,+iMV’) 

w2 “=GJ (I+Mo+iMe’) 

and where y(x) is the displacement of a chordwise eIement of 
the elastic axis of the wing at span position x due to bending; 
0(x) is the corresponding displacement due to torsion; primes 
associated with y and e indicate differentiation with respect 
to x; EIo is the flexural rigidity of the wing; GJ is the tor- 

W sional rigidity of the wing; y is mass of the weight; m is 

mass per unit length of wing; and w is the circular frequency 
of bending and torsion at flutter. In condition (c) the nota- 
tion y”‘(Z,-0) indicates that y”‘(z) is to have the value 
that it, approaches as z+Z1 from the inboard side of the weight 
and y”‘(Z1+O) indicates that y”‘(x) is to have the value that 
it approaches as x+Z1 from the outboard side of the weight. 
Similar meanings are given to 0’(Z,-0) and 0’(Z, +O) . 

The quantities L,+iL,‘, Ls+iLe’, M,,+iM,,‘, and 
M~+iM~’ can bc written in terms of tabuIated quantities as 
follows: 

L,+iL,’ = rpb2L,, 

Lo+i.Ls’=apb3 [Lc-L” (;+a)] 

M,+~iM;=apb3 kh-L, (;+a)] 

In reference 8 the values of L,L, L,, M),, and Ma are expressed 
in terms of Theodorsen’s F and G functions of reference 9 
and tabulated for various values of the reduced speed v/bw. 

The root conditions (a) and the boundary conditions (b), 
of the boundary-value problem, are the usual conditions that 
must be imposed upon the equations of a vibrating cantilever 
beam (or wing). Conditions (c) and (d) stipulate discon- 
tinuities of determinable magnitudes in transverse shearing 
force and torque, respectively. 
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Applying the Laplace transform (see appendix A) 

s 
om e-szf(x)dx=j(s) 

to equations (1) and (2) and making use of conditions (a), 
(c), and (d) gives 

s”jj(~)-sY~-Y~+e-~‘~[y”‘(1~-0)-y”’(1~+0)]- 

CYg (s) --p??(s) = 0 (3) 
and 

where 
Yz=y”(O) 
Y3=y”‘(O) 

e1 = 8’ (0) 

Solving equations (3) and (4) for g(s) and 5(s) gives the 
Laplace transform of y(x) and 0(x), respectively, as 

(s*+6)e-sz1[y”‘(ZI-O) -y”‘(Z,+O)] 
(5) n(s) 

and 

(~-s4)e-~z1[e’(Z1-o)-e~(zl+0)] 
a@> (6) 

where 

Goland and Luke (reference 4) showed that y(z) and e(x) 
could be written as a converging series by expanding the 
transforms (5) and (6) into power series and applying the 
inverse transform. A discussion of this expansion is given 
in section 4 of appendix A where it is shown that l/q(s) 
can be written as 

$)=;gog (7) 
where 

To=1 

T,=--s 

Tz=c~~-j-a: 

For n% 3, 
. . . . . 

T,=--TT,-,+(YT,-~S((YB--~~)T~-~ (8) 

When the series expansion of l/q(s), equation (7), is sub- 
stituted into equations (5) and (6), the transforms Y(s) and 

z(s) become sums of infinite series with terms of two distinct 
types; that is, terms of types 

and 

where m is a positive integer. 

The inverse Laplace transform of $ (see pair no. 3, 

p. 295, of reference 10) for x>O is 

(9) 

and the inverse Laplace transform of 7 Be-SZ0 (see pair no. 63, 

p. 298, of reference 10) for x>zo? 0 is 

B(x-x~)'+~ 
(m-l)! (10) 

When the expression for l/q(s) from equation (7) is sub- 
stituted into equations (5) and (6) and the inverse transforms 
are applied, the following ser;les expressions of y(x) and e(x) 
can be obtained: 

2 n+2 
Y (4 = y2 rngo (zx+ 2)! 

m zi (2nf3) ! Tnx2n+3 + e,p n$o (r;yi;, - 1 

P[ev,-o) -eVl+o)I & Tn(!~n~$~- 

[y”‘(zl-O)-y”‘(zl+O)] pin% T$n$;;+5+ 

(11) 

and 

ha C %I, ~~;x~~~,+[8)(Il-00) -wl+o)i 

[ 
ag T,8-Z,)2"+5-~ T,(x-Z,)~"+~ 

n=o (2nS5) ! n=o (2n+ l)! 1 + 

2 n-l-3 
Y [y”‘(b-0) -y”‘(L+O)l go Tn(i;n-2;)! (12) 

where in both equation (11) and equation (12) the terms 
involving (x-II) are to be considered as zero when x=ZI. 

Equations (11) and (12) are general expressions for the 
amplitudes or displacement of a point x of the elastic axis of 
a uniform wing vibrating in bending and torsion under the 
conditions of flutter with an arbitrarily placed concentrated 
weight. When the weight is concentrated at the wing tip, 
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the equations correspond to those obtained by Goland except methods exist, a graphical method was adopted for the pres- 
for a difference in root conditions. When the weight is ent work. For example, a value is assigned to one param- 
concentrated at the root (or if the mass of the weight is eter, preferably v/bw; the flutter determinant ‘is then 
reduced to zero), the equations reduce to those for a uniform evaluated for this value of v/bw and several values of the 
cantilever wing. These equations may appear rather formid- other parameter w. The values of the flutter determinant 
able in their present form; however, only the first few terms obtained in this manner are complex numbers and if the 
of each summation seem necessary for most cases. real and imaginary parts of a sufficient number of determi- 

Ins the- derivation of the flutterdeterminant in appendix B nant values are separately plotted against w, the point or 
it is shown that since terms involving (X-Z,) drop out of points where the real and imaginary parts are equal are 
both equation (11) and equation (12) at CC=.&, the values of obtained. If this process for other values of v/bw is re- 
I and O(Zl) can be obtained from the terms not involving peated, a locus of determinant values with equal real and 
(s-ZJ. Then, by making use of conditions (c) and (d) imaginary parts can be plotted against both v/bw and w. 
again, linear expression in Yz, Y3, and f+ can be substituted When enough points are determined, these plots give the 
for the bracketed expressions values of v/bw and w that cause the determinant to vanish. 

and 
[y”‘(Zl-00) -y”‘GI+O)l 

[e’&--o)--‘vI+o)l 

After the substitutions are made, equations (11) and (12) 
will contain only the, three undetermined coefficients Yz, Y3, 
and e1 for any particular wing-weight system of the type under 
consideration. Observe that conditions (b) have not yet 
been used. If these conditions are now imposed upon the 
equations, there is obtained a system of three linear homo- 
geneous equations in Yz, Y3, and e1 that may be written for 
reference as 

A;Y2+B,Y,+Clol=0 (13) 

where i=l, 2, and 3. 

An illustration of the process of solving the flutter determi- 
nant as described in the preceding paragraph is given in 
appendix B, which contains the complete solution of the 
determinant for one weight position of the particular wing- 
weight system described in the section entitled “Applica- 
tion to a Specific Wing-Weight System.” In general, when 
solving the flutter determinant by the preceding method, 
if the assumed values of v/bw and w are in the neighborhood 
of their true values, only a few points need be computed to 
obtain a solution. In the absence of experimental values 
of these parameters and in view of the work involved in 
determining other parameters that depend on v/bw, it will 
be found advisable to use simplified methods to obtain 
approximate values with which to start the solution. 

APPLICATION TO A SPECIFIC WING-WEIGHT SYSTEM 
The condit.ion t,hat a system of equations such as equations 

(13) have solutions other than the trivial solution 

Y2=Y3=e1=o 

is that the determinant of the coefficients Ai, B,, and CJ, 
vanish (reference 11). This corresponds t,o the borderline 
condition between damped (stable) and undamped (unstable) 
oscillations or to the point at which flutt#er occurs. It will 
be noted that the order of this determinant depends only on 
the order of the system of differential equations. 

The actual coefficients corresponding to At, Bi, and Ci are 
complex functions of the frequency w, the reduced flutter 
speed v/bw, and certain determinable characteristics of the 
wing-weight system. The true flutter speed is easily cal- 
culated when corresponding values of w and v/bw are known. 
These quantities may therefore be considered as (the only) 
variable parameters in the determinant of coefficients and 
the’problem of finding the true flutter speed is reduced to 
that of finding corresponding values of these parameters 
that cause the determinant, hereinafter called the flutter 
determinant, to vanish. If v is set equal to zero, the air 
forces drop out and the resulting determinant gives the 
coupled modes of vibration of the wing in still air. On the 
other hand, if w is set equal to zero the nonoscillatory or 
divergence condition is obtained. 

Attention is now turned to the application of the boundary- 
valuo problem discussed in the foregoing section to a specific 
problem. The wing-weight system that has been analyzed 
consists of a particular uniform cantilever wing and weight 
combination described in reference 5. The weight was con- 
sidered as concentrated at different specified span positions 
but always at about 0.41 chord forward of the elastic axis 
of the wing. This weight was selected because of its high 
mass compared with that of the wing and because of the 
large eccentricity due to the distance between its center of 
gravity and the elastic axis of the wing. Pertinent data, 
based on measured characteristics of the wing as taken from 
reference 5, with the units in feet and pounds are 

Chord,feet__--__----------.----------.-.---...--- “/3 
Length,feet_._--.-.-----.---.-----------------.. 4 
Aspectratio (geomct,ric).-------------------- _._.. 6 
Taperratio_..-.-....---.---------------.-.-.-...- 1 
Airfoilsection ___.__ _____ -_._---_---_-_-_--._____ 
W,pounds---~...~~~-.----~~-~--.~---~.~.-.~.... 

NACA 16---:X 

I,pound-secondz----...------- ___.______ 1 ___.___.- 0.00080 
EIb,pound-feet2 ,-__._______ - _____ --__-_-__--- __._ 977.08 
GJ,pound-feet2 ___._ - ..___ -___--__-_--___- ____._ 480.56 
l/~ (standardair,noweight)-----..----- ____ - __.___ 32.6 
e,,feet_____.---------.-------------------------- 0.013 

and, based on measured characteristics of the weight, are 

Several ways of solving the flutter determinant are 
mentioned in reference 7. Although more informative 

W,,pounds-----.-----.------------------------- 3.182 
ez,feet _______ - ______ - _______ - ____ -- ____-__-_--__ -0.2728 
I,, foot-pound-second 2- _ _ - _ _ _ - __ _ _ _ - - _ _ _ _ _ _ _ _ _ ___ 0.013625 
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Calculation of the flutter parameters have been made for 
the wing without the weight and for the wing with the 
weight at six different positions. The calculated results are 
compared with experimental results in figure 1 and in table I. 

5 

4 

I \ 

I 
3 I 

I 
\ 

IO 20 30 40 50 
Distance along span, in. 

FIGURE I.-Comparison of calculated and experimental flutter speeds for a particular wing- 
weight system. 

TABLE I.-EXPERIMENTAL AND CALCULATED RESULTS 
OF FLUTTER INVESTIGATION 

II I Calculated I Experimental 

17 -0.27% .- 25.27 19.23 8. fi. 29 23 333 331 22. 17.4 1 7. a. 88 22 334 324 
17 -. 2728 28.04 6. 93 407 a26.8 6.81 3R2 
iFi -. -. 2728 2728 30.68 25.67 8. 7.45 18 401 526 (b! ( “1 g 

4”: -. -. 2728 2728 24.87 23.60 6.07 7.06 368 3LKJ 2y\ 21.4 8. 7. 06 14 368 320 

b Divergence. 

- It will be noted in table I that all the calculated flutter 
speeds are within 7 percent of the experimental values and 
the calculated frequencies and reduced speeds are within 15 
percent of the experimental values, The calculated flutter 

speeds are generally slightly higher than the experimental 
values for II $17 and slightly lower for II 246. There is no 
such consistent trend in the other parameters. 

In figure 1 the ratio of both calculated and experimental 
flutter speeds for the wing with a weight to the flutter speed 
of the wing without a weight is plotted against span position 
of the weight. The important thing to note in examining 
figure 1 is that the shape of the theoretical curve follows the 
shape of the experimental curve very closely in the regions 
where experimental flutter was obtained. The horizontal 
dashed line in figure 1 represents the divergence speed for 
the wing as computed by the method of reference 12. Al- 
though the correct divergence speed for different weight posi- 
tions would probably vary, being somewhat lower with the 
weight at the tip than at the root, owing to the effect of the 
presence of the weight on aerodynamic forces, the agreement 
of the approximate value with experimental values is satis- 
factory. 

General expressions for the deflection curves are derived 
in appendix B from which amplitudes and phase angles for 
curves of deflection, slope, moment, and shear in bending 
and amplitudes and phase angles for curves of angular deflec- 
tion and torque in torsion can be computed. The phase 
angles and amplitudes for the deflection and shear curves in 
bending (fig. 2) and the phase angles and amplitudes for the 
angular displacement and torque in torsion (fig. 3) have been 
computed with reference to a unit tip deflection for the weight 
position I,= 17 inches. In figure 4 the amplitudes in deflec- 
tion and shear in bending from figure 2 are compared with 
the deflection and shear curves due to the fundamental un- 
coupled bending mode of the wing, and in figure 5 the ampli- 
tudes in angular deflection and torque in torsion from figure 3 

Distance donq span, in. 

FIGURE S.-Plot of amplitude and phase angle of displacement and shear curve in 
bending nt flutter for Z1=17 inches (amplitude and shear referred to unit amplitude 
at tip in bending). 
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FIGI-RE 3.-Plot of amplitude nnd phase angle of torsional displncemcnt nnd torque 
for 1,=17 inches at flutter (amplitude and torque rcierrrd to unit nmplitude at tip in 
bending). 

arc compared with the angular tlcflcct’ion and torque curves 
due t#o the fundamental uncoupled mode in torsion. There 
is a notable difference in the shape of the amplitude curves 
computed by the present method and those computed from 
t,he first normal modes. This discrepancy indicates that 
several modes would have to be employed to obtain satis- 
factory results by the Rayleigh type analysis. 

CONCLUDING REMARKS 

The method discussed in this report is not limikcl to a l:ni- 
form cantilever wing with a singlo weight. By proprr atten- 
tion to the boundary conditions the theory can quite easily 
be estcndcd to apply to a uniform wing carrying any number 
of arbitrarily placed weights, one of which might be consid- 
ered as a fuselage and made to yield the so-called symmetric 
and antisymmetric types of flutter. Furthermore, for c.on- 
venience of application, theoretical values of two-dimensional 
air forces have been used. However, since the method does 
not depend on the particular form of air forces involved, any 
known or available aerodynamic data could be used. In 
any event, the method is tedious and would, therefore, 
not be recommended over the Rayleigh type analysis when 
it might be known that only the first few normal modes of 
the structure are sufficient to give satisfactory results. 

For wings that a.re not uniform the differential equations 
for flutter conditions reduce to ordinary differential equations 
with variable coefficients. In this case the solution would, 
in general, be much more difficult to obtain. For general 
cases there would be no advantage in the operational method 
of solution although an iterative process probably might be 
used to great advantage. 

In conclusion it is pointed out that the location of such 
masses as engines, landing gears, and fuel tanks might be 
used to advantage in increasing the flutter speed of a given 
wing. As shown by the particular problem analyzed herein 
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FIGURE 4.-Plots 01 smplitudrs in bending displacement and torque and the corresponding 
curves computed for the first uncoupled normal mode in bending for I,=17 inches (ampli- 
tude and shear referred to unit umplitude at the tip in bending). 
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FIGURE 5.-Plots of amplitudes in torsional displacement and torque and the corresponding 
curves computed for the Erst uncoupled normal mode in torsion for 11=17 inches @mpli- 
tude and torque referred to unit amplitude at tip in bending). 

and by other experiences a definite region exists, peculiar to 
a given wing, in which masses added forward of the elastic 
axis of the wing tend to increase the flutter speed of the wing. 

LANGLEYAERONAUTICALLABORATORY, 
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 

LANGLEY FIELD, VA., November SO, 1948. 



APPENDIX A 
OUTLINE AND EXTENSION OF METHODS OF FLUTTER ANALYSIS AS PRESENTED IN REFERENCES 3 AND 4 

1. DERIVATION OF THE DIFFERENTIAL EQUATIONS THAT GOVERN THE 
MOTION OF A WING AT FLUTTER SPEED 

Consider a spanwise element of incremental length dx at 
station x of a wing oscillating in bending and torsion in a free 
stream of fluid (see sketch 1). 

SRETCM 1. 

The displacements Y and 8 of an element of the elastic axis 
are functions of x and t. In order that this element remain 
in dynamic equilibrium the external forces and moments on 
the element must balance the inertia forces and moments. 

The external forces and moments consist of transverse 
shearing forces and torsional moments, which are transmitted 
from one element of the wing to the next, plus the aero- 
dynamic lift force and pitching moment and internal or 
structural damping. Structural damping is not taken into 
consideration in this discussion, although its inclusion would 
add no computational diffculties. 

The transverse shearing force acting up”rnrd at r is 

b3Y 
N= - Erb b3J: (Al) 

and that acting downward at. (x+dx) is 

N+ FxT dx= - EI, $- EIb ‘&T dx (A% 

Similarly the nose-down torsional moment acting at x is 

(A3) 

and at (x+dx) the nose-up torsional moment is 

dT be b28 T+zdx=GJz+GJd22dx b44) 

The two-dimensional aerodynamic forces acting on an ele- 
ment dx of an oscillating airfoil have been derived by 
Theodorsen (reference 9) and can be written as a lift force 
and aerodynamic moment acting about the elastic axis of 
the wing, respectively, as 

L dx= w2L,Y+wLII’ $;+ w2L,8 + wLo’ g> dx (A5) 

w2MuY+ c&fu’ al a y+ w*M&+wMo’ g) dx (A6) 

The inertia force of the element dx can be writt,en 

and the inertia moment as 

(A7) 

(-4% 

Diagrams of the forces and moments acting on an element 
of wing of length dx at station x are shown in sketch 2. 

SKETCE 2 

Imposing the conditions of dynamic equilibrium of the 
element at z by equating inertia forces to external forces and 
inertia moments to external moments gives the two dif- 
ferential equa.tions that govern the motion of the wing: 

8 
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2. BOUNDARY CONDITIONS FOR A UNIFORM CANTILEVER KING CARRYING 
AN ARBITRARILY PLACED WEIGHT AT FLUTTER SPEED 

The boundary conditions that must be imposed upon 
equations (A9) for a uniform cantilever wing are 

(3) O(O, t) =o 

(4) Erh [& YW)]z=l=o 

(5) EIb [$ Y(z,t)]z=r=o 

(6) GJ[$ eb,t)]z=l=o 

These are the usual conditions that must be imposed on a 
vibrating cantilever beam. Condition (1) is the condition 
that the end at x=0 is supported (either hinged or built in). 
Conditions (2) and (3) imply that this end is fixed or built 
in. Conditions (4), (5), and (6) imply, respectively, that, 
there is no bending moment, transverse shearing force, or 
torsional moment acting at the tip x=1. 

If there is an arbitrarily placed weight on the wing, other 
conditions must be imposed that will determine the effect 
of the weight upon the motion of the wing. If the weight 
is considered as concentrated at some point on the chord 
line at station zr=Z1, it will create discontinuities in both 
transverse shear and torsional moment. The magnitude of 
these discontinuitks are known functions of the mass of the 
weight, the location of the weight, and the acceleration of 
the wing. The remaining conditions required to complete 
the boundary-value problem for the general motion of the 
weighted wing are, therefore, 

(7) EI, 
f[ 

u;, b2 =- 
[ 

s Y(x, t) +e2 g2 0(x, t) 1 1 
C8) GJ j i ~(~~t),z=~~~~o,--,2i @(x~t~:.,.l+.,r 

e2 g2 Y(x,t)+K22g2 e(x,t) 1 z= z1 
For the purpose of flutter analysis it is assumed t,hat the 

motions in both bending and torsion a,re harmonic and that 

the frequencies i.n bending and torsion are equal. Therefore, 
only the pa.rticular form that the solution to the boundary- 
value problem has when these conditions prevail need be 
sought. These conditions imply that Y(x,t) and e(x,t) are 
of the forms 

Y(x,t) =y(x)efwr 

I 
(Alo) 

.O(x,t)=f?(x)et”l 

where, on the right-hand side of equations (AlO), y and 0 are 
now complex amplibude functions of the span coordinate x 
from which the shape and phase relation of t,he wing at 
any fixed time during flutter can be obtained. 

If the values of Y and 0 from equations (AlO) are sub- 
stituted into both differential equations (A9) and into the 
boundary conditions, the problem is greatly simplified. The 
differential equations become independent of t and appear 
as ordinary differential equations with constant coefficients. 
After malting the substitution and rearranging terms, the 
equations of motion can be written as 

EI, &-- (m+L,+iL,‘)w2y-(me,+Lg+iLe’)w28=0 

or more simply as 

qJ_ 
dx” ay--pe=o 

d% 
dT+Y?l+6e=0 

(Al% 

The boundary conditSions also become independent of t and 
can bc written as follows: 

(1’) 1J (O)=O 

(2’) y’(0) =o 

(3’) e(o) =o 

(4’) y”(Z) =o 

(5’) y”‘(Z)=0 

(6’) O’(Z) =0 

(7’) ElbIy"'(Z,-O)-y"'(l,-l-o)l=-~ w2[y(Zl)+e2e(Z,)] 

(8’) GJ[e’(ll-o)-e~(Z1fO)]=~~ wz[e2y(11)+K22e(Zl)] 
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3. SOLUTION OF BOUNDARY-VALUE PROBLEMS IN ORDINARY DIFFEREN- 
TIAL EQUATIONS BY OPERATIONAL METHODS AND APPLICATION TO A 
BEAti CARRYING AN ARBITRARILY PLACED WEIGHT 

The boundary-value problem given by equations (A12) 
and conditions (1’) to (8’) can be solved by straightforward 
methods of solving ordinary differential equations with 
constant coefficients. The operational method, however, 
is a much easier and shorter approach, particularly in view 
of the discontinuities in shear and torque. 

Briefly, the solution of a boundary-value problem by 
operational methods consists of applying the Laplace trans- 
form to the differential equations, the initial conditions (root 
conditions when applied to beam problems), and certain 
forms of other boundary conditions; of solving the resulting 
system for the transform of each dependent variable; and 
then applying the inversion inkgral to the results. The 
remaining boundary conditions are then used to set up 
relations among whatever undetermined parameters that 
might remain. 

In the case of flutter analysis a complete solution to the 
equations is not needed but only the conditions under which 
an unstable equilibrium may exist. The relations that, can 
be set up between the undetermined parameters correspond 
precisely to this condition In other words these relations 
appear as a system of homogeneous equations and the satis- 
faction of the condition that this system of equations have a 
common solution other than the trivial solution corresponds 
to the borderline condition separating the damped and 
undamped oscillations of the wing. 

The Laplace transform off(z) is 

L{f(x) ] =~-e--j(.r) dx=T(s) (A131 

where s may be real or complex and x>O. The sufficient 
conditions that this infinite integral exist arc that,f(t) have 
no infinite discontinuities for x2 0 and that f(x) be of ex- 
ponential order as x+ ~0. (See reference 10.) In other words 
finite discontinuit,ies such as those appearing in t,he foregoing 
problem do not invalidate the operational approach. 

The Laplace transform of the nth derivative of a con- 
tinuous function with continuous derivatives, for which the 
function and all its derivatives are of exponential order, 
can be obtained directly from equation (A13) as 

L{f”(x)} +T((sl -s”-‘f(0) -s”-“f’(0) - . . . -f”-‘(O) 
(A14) 

The Laplace transform is linear in the same sense as 
differentiation or integration. That is, if ai and b, are 
constants 

~{u,f”(xj+u,-,fn-‘(x)+ . . . +~“.f(xj+~n,emwi- 

. . . +~oe(x,}=~,~If”(x)j+~,-,~{f”-‘(x)}+ . . . + 

uoL{f(2j}+b,L{e”(x)}+ . . . +~o~{e(~)j (Al51 

Thus the Laplace transform of a linear differential equation 
with constant coefficients is generally a sum of expressions 
similar to equation (A14). 

In equation (A14) the quantities f(O), f’(O), . . . , 
f”-‘(O) are the boundary conditions at the origin of the 
dependent variable (wing root) that corresponds to constants 
of integration. When these quantities are given, they are 
put directly into the transformed equation. When the 
quantities are not given, they correspond to what has been 
called undetermined parameters in the preceding paragraphs 
and must later be determined in terms of other boundary 
conditions . 

Finite discontinuities in a function or any of its deriva- 
tives are taken into account by proper attention to the 
limiting values that the function or its derivatives have on 
the two sides of the discontinuity. In particular, if a func- 
tion and its first n derivatives are of exponential order, if 
the first (n-2) derivatives are continuous, if the (n- 1)” 
derivative has a finite discontinuity at x0, and if the nth 
derivative is continuous except for a singular point at ~0, 
(see sketch 3), the Laplace transform of the nth derivative 
has the form 

L{f”(x)}=s”f(s)-Ftf(O)- . . . - , 
s~“-~(O) -f”-‘(O) -e-“““[f”-l(xO+O) -f”-‘(x0-O)] 

6416) 

wheref(so+O) is the value of f(x) as z approaches x0 from the 
right and -f(xo-0) is the value of f(x) as x approaches x0 
from the left. In other words the terms in the brackets 
express the magnitude of the discontinuity inf”-‘(2) at z. in 
the (n-1)“” derivative at x0. 

1) 
f”(x) 

4,C’ 
f n-‘(x) f R-‘k4 

I 
I 

x0 z- 
SRETCA 3. 

An examination of the boundary-value problem, equation 
(A12), shows that the transform will be given by a sum of 
expressions precisely of the form of equation (Al6). 

‘In order to interpret the transformed function f(s) in 
terms of the original function f(x), use may be made of the 
inversion integral discussed in text books on operational 
calculus; or one may refer directly to tables of transform. 

II : 
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As a simple example the operational method is applied to 
a cantilever beam carrying an arbitrarily placed weight and 
assumed to be vibrating in a vacuum in bending only. 

The boundary-value problem for this case can be written 

EI, $$=mw2y (Al71 

(4 ~(0) =7~‘(0) =O 
(b) ., y”(Z)=y”‘(Z)=o 

(c) EIo[y”‘(ZI-,0) -y”‘(Z,+O)J= -y y(Z,) 

(Al@ 

where the symbols have the same meaning as in equation 
(A12). 

0 4 812 16 20 24 28 32 36 40 44 48 
Disionce o/on9 span, in. 

FIGURE B.-Plots of detlection and shear cw”es computed from tho first uncoupled modes 
in bending by the differential-equation method and by the Xl-station iteration process of 
reference 13 (referred to unit tip deflection). 

If the root conditions (a) and the boundary condition (c) 4. REPRESENTATION OF THE INVERSE TRANSFORM OF THE BOUNDARY- 
are used, the transformed problems solved for g(s) gives VALUE PROBLEM, EQUATION (Al-Z), BY A POWER SERIES 

where, for brevity, Yz=y”(0), Y,=y”‘(O), &d a4=&. 
b 

The inverse transform of equation (A19) is (see pair nos. 
31 and 32, p. 296, and relation 12, p. 294: of reference 10) 

y(z) =zz (cash (rz--cos a!~) +2yzS (sinh err-sin crx) + 

OT 

5:&b y(ZI)[sinh a&--Z,) -sin a(~--ZJ] (A20) 

y (x) =g (cash (YX-cos ax) +ga (sinh ax---sin XX) + 

(cash crZl--cos aZ,) + 

5 (sinh dl-- sin aZI) ] [sinh ~l(s-Z~) -sin CX(S-ZJ ] 

(A211 

where the last bracket is zero when s--Z1 S 0. 

Imposing boundary conditions (b) gives two homogeneous 
equations in Ya and Y3. Each value of 01 that will cause the 
determinant of the coefficients of Y2 and Y3 to vanish corrc- 
sponds to a mode of vibration. 

This result has been applied to the wing and weight dis- 
cussed in the text of this report with the weight located 17 
inches from the root. The deflection and shear curves due 
to the first uncoupled modes in bending only have been 

computed and are plotted in figure 6. Corresponding re- 
sults have been computed by a 20-station process of iteration 
discussed in reference 13 and plotted in the same figure. 

The transform of both y(z) and e(x) of equation (Al2) is 
of the form 

f@)=P(S)+4(S) 

PI (8) Pz(s) e-zos (A221 

where P,(s) and Pz(s) are polynomials both of lower degree 
than n(s), Neither PI(s) or P2(s) have common factors with 
n(s) where a(s) is of the specific form 

y(s) =s6+d+bs2+C= (3-R,) (.?-I&) (s2-R3) (A231 

where the coefficients a, b, and c and the roots squared RI, 
I&, and 8, are complex. The inverse function associated 
with such a transform gives f(z) in terms of circular and 
hyperbolic functions of x,/g, but with the results in this 
form the process of solving the flutter determinant becomes 
very cumbersome. 

By making use of the properties of symmetric functions, 
Goland and Luke (reference 4) outlined a simple method of 
obtaining the multinomial expansions or Maclaurin’s series 
for the transforms of equations (A12). The inversions of 
these expansions give y(x) and 0(r) in the form of convergent 
series and thus circumvents the meticulous task of finding 
the roots of a(s). 

For the development of these series it is first necessary to 
consider a(s) as a cubic in 9; namely, 

y(s) =,TI1, (s2-RJ =+I1 
( > 

l-3 (A241 

By making use of the binomial theorem, l/q(s) can bc 
written as 

r=l; l+!$+E& +;;+ . . .) n(s) @i=1 ( WW 
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Equation (A25) is independent of any interchange of the 
parameters RI, R,, and R3 and thus satisfies the description 
of a symmetric function in these parameters. (For a dis- 
cussion of symmetric functions see reference 11 or any text 
on higher algebra or theory of equations.) If the indicated 
multiplication in equation (A25) is carried out, the results 
can be written 

+$+. . .) (A=) 

where the general term T, represents the sum of all possible 
symmetric polynomials in RI, Iz,, and R3 which are of degree 
n and with all coefficients unity. By making use of Newton’s 
identity relative to symmetric polynomials, that is 

T,,= -aTn-l-bTn-z-cTn-, (A27) 

where the value of any Tn-1 is to be disregarded when 
n-j<O, every T, can be written in terms of the coefficients 

a, b, and c of equation (A23) ; for example, 

To=1 

T,= -a 

Tz=a2----b 

T3=-a3+2ab-c 

. . . . . 

6428) 

With the aid of equation (A26) and equations (9) and (10) 
of the text, the inverse transform of equation (A22) or of 
y(s) and z(s) can therefore be written as a sum of terms of the 
type given in equations (9) and (10) where the Tn’s enter as 
coefficients in the numerator and are easily evaluated in 
terms of the coefficients of a known cubic equation. In the 
application to flutter analysis only the first few Tn’s are 
usually necessary because the resulting series is generally 
found to be highly convergent. 

APPENDIX B 
DERIVATION OF THE FLUTTER DETERMINANT AND SAMPLE CALCULATIONS 

INTRODUCTION 

In this section the flutter determinant is formally derived and the method described in the text for solving the determi- 
nant is illustrated with sample calculations for a specific example. Also final expressions for the deflection curves are given 
from which amplitude and phase-angle curves of deflection, shear, and torque are calculated for a specific case. The calculated 
amplitudes are compared with corresponding curves computed from the fundamental uncoupled modes in bending and torsion. 

DERIVATION OF THE FLUTTER DETERMINANT 

In equations (11) and (12) of the text it is first necessary to evaluate the expressions 

and 
[Y”‘&-0) -y”‘(Zl+O)] 

LO’ @1- 0) - 8’ cz1+ 0) I 

in terms of Y2, Y3, and 19~. Since terms involving (x--II) drop out of both equation (11) and equation (12) for x=&, the values 
of y(ZJ and 0(ZJ can be obtained directly from these equations. The values of y(ZJ and 0(ZJ substituted into conditions (c) 
and (d) of the text give the desired reIations; nameIy, 

and 

8’ (I1 - 0) - 0’ CL + 0) = * [e2y (Zl) +K22e(zl)] 
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Substituting equations (Bl) and (B2) into equations (11) and (12) gives 

Y(x)==h,(x)Y2+h2(x)Y,+h3(x)e, 

13 

(B3) 

where 034) 

- T,Z12n+1 
K22 %GO (2n+ 1) ! I[ Ly .g T,(x-Z,)~“+~ 

n=o (2n+5)! 

w * T,,Z,2n+’ 
-ET [(@-e2a) go (;f;;;!+e2 nzo (2n+l)! 1 ngo 

T,(x-Z~)~“+~ 
(2n+5)! 

By imposing conditions (b) of the text 
y”(z) =f”(z)=e’(z) =o 

upon equations (B3) and (B4), three equations are obtained (written in the text as equation (13)) : 

AIY?+BZY3+Ciel=O 
where i= 1, 2, and 3 and 

A, =h,” (I) B1=h*“(Z) C;=h,“(Z) 

A2=hl”‘(lj B,=h,“‘(Z) C2=&“‘@) 

&=gl’(O B3 =g2’ (0 C3=93’(0 

Imposing the condition that the equations (13) have a solution other than the trivial sdution y2=y@h=o results 

in the flutter determinant 

AI BI C, 

: A2 B2 C2 

A3 B3 C, 

A= =o 035) 

z. ,, .:- ..LG- - - -- 
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SAMPLE CALCULATION OF FLUTTER SPEED AND DEFLECTION CURVES 

A method of solving the flutter determinant given in the text is illustrated here by the solution of the determinant for 
the wing-weight combination discussed in the text when the spanwise location of the weight is 17 inches from the root. The 

values of z=i that are chosen are in the neighborhood of the experimental value and have available tabulated values of 

Theodorsen’s function C(k) =F+iG. 

Table II shows the actual computations required to evaluate the coef&ients &, Bi, and Ci for e=7.1429 (k=O.14) 

and two values of g=j cf=25 cps and j=28 cps). From colums 0, a,, and @  the determinant for j=25 cps is 

or 

A= 

Similarly, for j=28 cps, 

A= 

or 

(14.9200-2.8574i) (12.8320-2.0315i) - (7.3286-0.60021&) 
(11.8000-3.6695i) (10.2970-2.8566i) -(5.4711-0.93233i) 

((0.17030-0.66134i) - (0.09077+0.59341i) - (0.41138-0.28864i) 

A=1.0326 - 0.6948i 

(18.6380-3.8115i) (15.0860-2.6399i) -(9.1238-0.85433i) 
(15.5930-5.0935i) (13.0080-3.79463) -(7.1158-1.3988&) 

-(0.04177$0.87098i) - (0.23526$0.75948i) - (0.51403-0.37017i) 

A=-0.4029 - 0.0312i 

The determinant was evaluated in this manner for the same value of v/bw and several other values of j. The process was 

then repeated for tW=6.25 and several values of j and for 2=5.00 and several values of j. The real and imaginary parts of 

the evaluated determinant for each value of c/bw and the corresponding values of j are separately plotted in figure 7. The 
ordinates of the intersections of the different pairs of curves of real and imaginary parts were scaled in figure 7 and plotted as 

Ae against both c/bw and-f in figure 8. The zero ordinates of these curves give the value of v/bw c&=6.93) and the values of 

.f (.f=28.04 cps) for which the determinant vanishes. From these values the flutter speed is rea.dily calculated to bo 

v= (bw) (6.93) = (2rbj) (6.93)= (2T)(28’~4)(6’g3)=407 fps 

As pointed out in appendis A the deflcct,ion curves at any specified time arc given by cquat,ions (AlO) 

Y&t) =y(z)e i”t=y(z) (cos wt+i sin it) 

f3(z,t) =O(x)e*-‘=0(x) (cos wt+i sin wt) 

32 28 2G 30 25 26 27 28 
Frequency, cps 

(a) ,+.oo. (h) $;=6.25. (C) +.1429. 

FIGURE 7.-Plots of A against frequency Ior pnrticular values of reducod speed. 2,=17 inches. 

.8 

:4 (a) W, 
27 28 29 30 3/ 32 5 6 7 8 

Frequency, cps Reduced speed, vlbw 

(a) A. against frcquoncy. (b) A, against reduced speed. 

FIGURE &--Plots of A, against froqucncy and reduced speed. Z1=17 inches. 
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where final forms of y(z) and 19(z) are g&en by equations (B3) and (B4) and where, at least, the relative values of the unde- 
termined coefficients Y,, Y3, and e1 in equations (B3) and (B4) must be known. If the set of values of v/bw and u that satisfy 
the flutter determinant is used to determine the coefficients A,, Br, and Ct in equations (13), there is.obtained a system of 
three homogeneous equations in the three unknowns Y2? Y3, and 8x that have solutions other than the trivial solutions 
Yz= Y,-0,=0. If these equations ‘are each divided through by any one of the unknowns, say Y,, there is obtained a consist- 
ent system of three equations in the two ratios Y1/Y2 and &/Y,. 
these ratios. 

Any two of the three equktions can therefore be solved for 
Consequently, equations (B3) and (B4) can be written with one undetermined parameter that appears as a 

factor in each eqtiation. Furthermore, since the coefficients A,, Br, and 17~ are complex nutibers, the ratios Y,/Y, and 0,/Y, 
are complex numbers and equations (B3) and (B4) contain complex coefficients. 
equations can be separated and the equations written as follows: 

The real and imaginary parts of these 

If these relations are substituted into equations (AlO), 

Yb,G=Y2I?/ ( > 1 2 cos wt-y2(x) sin wt+i[yz((2) cos wt+yl(z) sin wt]} 

e(~,t) =Y2{e2(x) cos d-e,(x) sin d+i[e3(x) cos d+e,(x) sin wt]} 3 
037) 

where 

Y(x,t> =Y2~[yl(x)]2+[y2(x)]2 [cos (wtS91) fi sin (wt++J] 
-- 

e(5,~j=Y2J[e2(~)12+Ee3(x)11 bs (~t++~)+i sin W+h)l 3 
@8) 

and 
1 e3(4 &=tan- e,(z) 

and where &-& represents the difference in phase angle between bending motion and torsion motions at x. 
The real parts of equations (B8) are interpreted to mean the motions in bending and torsion taken in a positive sense. 

The imaginary parts can then be interpreted as representing these same motions with a phase shift of a/2 radians. 
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TABLE II-SAMPLE CALCULATIONS OF COEFFICIENTS Ai, Bi, AND Ci 

[k=0.14] 

0.65247-0.203411 - 0.48470 + 0.02865i 0.03178+0.05169i 
--~ -- 

0.81846-0.25515i -0.60800+0.03594i 0.03986+0.06485i 

T"l,2n+d 
c- (2n+4)! 

I 0.16622+0.00033i 

I 0.16582+0.00041i 

I 0 

(-0.02289+0.00132i)0, 

(-0.02866+0.00164i)e, 

0 
T,Vn+ 

c (2n+l)! 

I 1.3695 + 0.00727i 

8 0 

[oxo+o1Y2 T,1,2"+5 
c (2n+5)! 

(1.0108-0.00228i) Yz ! 0.04721+ 0.00007i 

(1.0127-0.00285i) Y2 0.04713+0.00009i 

@ 0 

y(h) =O+O+O [-OXOIYZ 

(1.0108-0.0022%) Yz 
+ (0.47534-0.00046i) Y3 (- 0.00527 - O.OOSSOi) Y, 

+(-0.02289+0.00132i)8~ 

(1.0127-0.00285i) Yz 
+ (0.46682-0.00058i) Y3 (-0.00658-0.01077i) Y3 

+ (-0.02869+0.00164i)e, 

(-0.00527-0.0086Oi) Y2 (1.0122+0.00007i) Yz 
+ (-0.00149-0.00244i) Y3 +(0.47575+0.00021i)Y~ 

+ (1.3387+0.01683i)e1 + (-0.38791-o.oo327i)e1 

(1.3193+0.02095i)e, 
(-0.00658-0.01077i) Yz 

+(-0.00187-0.00306i) Y3 
$(1.3193$0.02095i)8* 

- 

.- 

.- 

- 

-. 

I I !d 
B 

0.16724-0.03661i 0.98302$0.00375i 8 -~- -- 
0.20984-0.045933 0.97789+0.004682’ ?r: 

(b 
2 

63 0 1 
T,Z1?"+3 

c (2n+3)! toxo+@ly3 
E5 

2 

0.46744+0.001272’ (0.47534- 0.00046i) Y3 
---~ 

0.46583+0.00157i (0.46682-O.O0058i)Y3 
?I 

/ I id 
id 

(-0.00149-O.O0244i)Y, (-0.03082+0.00956i)e, 3 
E 

----- 

(-0.00187-0.00306i)Y3 (-0.03859+0.01195i)e1 z 
b- . b 
g 

@ % 

O-h@ 

(-2.5332-0.00017i) Yz 
+ (-1.1907-0.00051i) Ya 

+ (0.97082+0.00818i)0~ 

(1.0145+0.000082’) Y, 
+(0.46733+0.00026i)Y3 

+ (-0.38839-O.O0407i)e, 

(-3.1848-0.00026i)Yz 
+ (- 1.4671-O.OOOSli) Y3 

+ (1.2193+0.01278i)e1 



8 
Tn~2,‘+3 $- (2nf3)! 

0 
w CL? --@ 
g GJ 

0 
T,W2 

c---- (2n+2)! 

0 

e&-j- K$@ 

(-0.27634-O.O0056i)Y, 
+ (-0.12982-0.00021i)Y~ 

$ (0.19038+0.00195i)l9~ 

.- 

- 

- 

.- 

.- 

(-1.4062-O.O0286i)Y? 
t (-0.66059-0.00107i) Y3 

+ (0.96875+0.00995i)e, 
7.0385-1.9729i 10.0478-0.77851i 

8.7043-2.5064i 10.6050-0.979962 

11+24-0.356542 

--- 

11.636-0.449422 

_- 

= 

-- 

_- 

= 

.- 

_- 

= 

_- 

-- 

= 

(-0.27704-0.00070i)Y~ 
t(-0.12755-O.O0026i)Y3 

+(0.18928$0.00243i)01 

0 

(-1.7683-0.00449i)Ya 
t(-0.81415-O.O0168i)Y3 

+(1.2082+0.01553i)e, 

@ 

y T,(Z---1#n+3 
. - (2n-t-3)! 

Q Q 

OX@ OX@ 

0 

T,,(l--1,)2”+’ 
c @n-t-l)! 

-1.3648+0.07913i 0.47114-0.10255i 8.0051-1.3737i 2.8156tO.OO321i 2.7457 - 0.092583' 

9.0919-1.732Oi 2.8018tO.OO375i 2.7925-0.11692i - 1.7036+0.098433’ 0.58810-0.127892' 

0 Q 

OX0 

0 

T,(l-z1)2”+2 
c (2?+2)! 

0 

OX@ 

I 

t8toxo1 Ya 
-w&t-@I Yrl-E3)1~1 

-[@X@X@l 
tLox@x@l 

Jr[@X@l=v” (1) 

(14.9200-2.8574f)Y, 
+(12.8320-2.0315i)Ya 

-I-(-7.3286+0.60021i)e1 
7.0966-2.3234i 0.55204-0.123962 3.3038-0.017933 

-- 

3.2979-0.02306i 

-1.6008$0.10336i 

-2.0043tO.13256i 0.69097-0.1563Oi 
(18.6380-3.8115i)Ys 

+(15.0860-2.6399i) Y3 
+(-9.1238$0.85433i)e1 

0 

9.1581-3.01442: 

0 
[-OX@,] Y2+[---ox@l Y3 

+~-~xQtOi~l 
-[oxox@l 
ttoxox@l -j-[-@x@]=e’(z) 

[0+0x01 Yz 
-I-[@+@,] Y3 

+[016+[0x01 
-[@x0x@,] 

t[@x@x@l=1/“’ (1) 
c 

T,(1-Z,)2”+’ 
(2n+4)! 

(0.17030-0.66134~~ Yz 
+(-0.09077-0.59341i)Y3 

t(-0.41138t0.28864i)e1 

(11.8000-3.6695i)Y, 
t-10.2970-2.8566i)Y3 

+(-5.4711t0.93233i)e1 
1.6846-0.25672i 10.807-0.12747i 

I 
1.8198tO.OO476i 

(15.5930-5.093521 Yz 
+ (13.0080-3.7946i) Y3 

t (-7.1158+1.3988i)e, 
10.853-0.1614Oi 1.8110t0.00587i 

(--0.04177-0.87098zJ Yz 
t(-0.23526-Oo.75948i)Y3 
+(-0.51403+0.37017i)e1 

1.8685-0.32229i 
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